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Stability of the Oscillation Mode in a
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Abstract —By using the Rieke diagram in terms of travefing waves, we

discuss the stability conditions for an oscillation mode in a multiple-oscilla-

tor system which clearly indicate the reason why it is difficnft for a

multiple-oscillator system to obtain a single-mode operation. Further, we

proposed a combining power system of oscillators which can give a stable

operation free from the moding problem. Experimental observations are

fonnd to be in good agreement with the conclusions of the analytical

approach.

I. INTRODUCTION

o VER THE YEARS, there has been great interest in

developing techniques for combining power from mi-

crowave and millimeter-wave power sources [1]–[9]. Micro-

wave power-combining techniques can be classified into

two categories:

1) a number of devices that contribute to the output

power in a single circuit [1]-[4],

2) the output powers from a number of oscillators that

are summed to produce a higher outptit power [5]–[7].

Most of the approaches for power combining of solid-

state devices belong to the former class because of the ease

of attaining single-mode operation [1]–[4]. With the com-

bined oscillator in the latter class it is inherently difficult to

control oscillation modes [8]. However, studies of the latter

class are important for the purpose of combining oscilla-

tors, such as magnetrons and klystrons, and for use with

the method in the former class.

In this paper, we clarify why it is difficult for a

multiple-oscillator system to control oscillation modes. We

then discuss the condition to overcome this difficulty. To

this end, in Section II, we transform the Rieke diagram in

terms of the power into one in terms of traveling waves. In

Section III, we discuss the stability of oscillation in an

injection-locked oscillator using the new Rieke diagram. In

Section IV, extending the discussion in Section III, we

obtain a stability condition for the oscillation mode in the

multiple-oscillator system. In Section V, we apply the

stability condition to a power-combining system with hy-

brid couplers.

II. RIEKE DIAGRAM IN Mum OF TRAVELING WAVES

Fig. 1 shows a circuit of the injection-locked oscillator. If

a signal is injected with a frequency close to the free-run-

ning frequency, the oscillator will be locked to the injection
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Fig. 1. An equivalent circuit of an injection-locked oscillator with a
circulator.

Fig. 2,, Measured Rieke diagram of a Gnnn oscillator.

signal. The quantities a and b shown in Fig. 1 will be

called, respectively, the output and input waves of the

oscillator. We define the inverse reflection coefficient of

the oscillator fi’~ as

SG = b/a (1)

where a and b are values at the reference plane in Fig. 1.

Fig. 2 shc]ws the conventional Rieke diagram of a Gunn

oscillator on the S~ plane. The constant power contours in

Fig. 2 can be transformed into constant amplitude con-

tours of A ( = lal) and B ( = Ibl). Using the relation

we have

AZ= P/(l– lS~12) (3)

B’= lS~12.P/(1– lS~12) (4)
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Fig. 3. Rieke diagram in terms of the traveling waves for the same

Gunn oscillator as in Fig. 2. Ialz: numbers shown in circles. Iblz:
numbers shown in parentheses.

where P, A, and B are values of the oscillator at an

operating point S~. Applying (3) and (4) to the constant

power contours in Fig. 2, we obtain constant amplitude

contours of the output and input waves, as shown in Fig. 3.

Now we can express S~ as a function of A and an

angular frequency u, i.e.,

sG=s#)(A, @) (5)

or a function of B and a, i.e.,

sG=sg)(B, @). (6)

In this paper, we use the latter expression because the

oscillator in the injection-locked mode is controlled by an

input wave [10]. Here, it is assumed that S~(B, a) is an

instantaneous function of B. From now on, S~D)(l?, U)

will be replaced by S~(B, u).

Since we consider a small-signal perturbation in this

paper, we can express S~ approximately in the vicinity of

an operating point So as follows [9], [10]:

S~(B, w)= SO+ S~~O.(B– BO)+S~@O. (ti-tiO). (7)

The terms on the right-hand side of (7) are the first three

terms of the Taylor expansion of SG(B, a) and

SO= SG(BO, QO) (8)

~,.= (dS./dB) at SOs (9)

GUO= (OS~/dti) at SO.s (lo)

S~ in square brackets [ ] indicates an operator which is

applied to the output wave a. Therefore, [S~] is interpreted

as follows [8], [10]:

[S~(BO, ti)]pexp((a+ jo+)t+jd)

=S~(BO, ul–ja).pexp((a +jul)t +@) (11)

where p, al, 8, and a are constants. This is justifiable since

the time derivative is everywhere replaced by multiplica-

tion by ju in the ac circuit theory.

III. ANALYSIS OF STABILITY OF OPERATING POINT

A. Injection-Locked Oscillator

Suppose that the locking has been established in the

circuit shown in Fig. 1. Then the corresponding equation is

given by

[S~(Bo, ~)]ao=b. (12)

where

aO = laOlexp( j@Ot)

b.= Ib.lexp(juot + jArgS~(Bo, @O)). (13)

In case lb012 =1 mW and ~–~0= +2 MHz, we may

expect that the oscillator is locked at the operating point X

or Y, as shown in Fig. 3. On the other hand, in case

lb012 = 1 mW and ~ – ~0 = + 5 MHz, no locking takes place

because no operating point which satisfies (12) exists.

Even if an operating point which satisfies (12) exists in

Fig. 3, no locking takes place at the operating point, which

is unstable for a small perturbation. When bO is changed

by a small amount Ab, the locked-oscillator equation (12)

becomes

[S.+S~~o(lbo+ Abl- lbOl)+S~uO(O- oo)](ao+ Aa)

= bO+ Ab. (14)

To determine a behavior of Aa( = Aa(t )), let us express Aa

as follows:

Aa(t)=Aa(0).exp ((a+ j(uO+co~))t) (15)

where u~, as well as the magnitude of A a, is a slowly

varying function of time compared to one RF cycle.

Now, assume that Ab is removed and enquire whether

or not Au decays with time. If it does, such an operating

point is stable. When Ab is removed, (14) becomes

[(%+ %ti..(~ - ~.))] (a.+ Aa) = b.. (16)

If a nonzero Aa exists, substituting (12) into (16), we have

(S. + s~u..(u. - @))Aa = O. (17)

Equation (17) determines a for a given ~.. Referring to

(11), we can state the following:

1) When a >0, the operating point is unstable.

2) When a <O, the operating point is stable.

3) When a = O, the operating point is stable; however,

in this case, the FM noise becomes extremely large

[9], [10].

From (17), the operating point SO is stable provided the

origin of the Rieke diagram is located on the left-hand side

of the vector direction of S~@O, which originates at the

point SO. Therefore, in Fig. 4, for example, operating

points SOI and S02 are stable; on the other hand, operating

points S03 and SO1 are unstable. Then, in Fig. 3, the

operating point Y is stable and X is unstable. From the

above discussion, the points of contact between the con-

stant contour of a frequency and an input-wave amplitude

form a boundary between the stable and the unstable

regions of the operating point. In Fig. 3, the dashed-dotted

line represents a boundary line obtained in this way.
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Fig. 4. Explaining the stability of the operating point.
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Fig. 5. The output-wave arnptitude versus the injection frequency.
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Fig. 6. Free-running oscillator terminated with a load.

When necessary, we express the operating point

S~(BO, UO) in the stable region as S~)(BO, 00) and in the

unstable region as S~”)(BO, aO).

In the circuit as shown in Fig. 1, suppose that the

frequency of the input wave is swept with a constant

amplitude. When lbOl2 =1.0 mW, for example, the operat-

ing point moves from A through Y to B along the constant

amplitude contours of the input wave in Fig. 3. A solid line

in Fig. 5 shows the locking range and the output-wave

amplitude variation as the frequency of an input wave is

swept, which are predicted from Fig. 3. Fig. 5 shows that

the analytical results agree well with experimental results

for various values of @Ol2.

B. Free-Running Oscillator Terminated with a Load

Fig. 6 shows a diagram of the free-running oscillator

terminated with a load. Here, the input wave bO( = BO.

exp ( j@Ot + j$O)) is the reflected wave from the load. When

the oscillator in Fig. 6 is in the steady state at the operating

point SO( = S~(BO, UO)), the corresponding equation to (12)
is given by

[S~(BO, Q)-SL(W)]aO=O (18)

Coupllng circuit (Load)

~L

-~
bnh

Fig. 7. Power-combining system of n oscillators.

where S~( Q ) is the reflection coefficient looking into the

load from the reference plane shown in Fig. 6. From (18),

we obtain

SO= S~(Bo, @o)= S~(@.). (19)

In the vicini~y of the operating point SO, by the use of the

Taylor expansion, S~(ti) is approximated as follows:

sL(@)=so +sL@o. (@–@o). (20)

As the corresponding equations to (16) and (17), we have

[S~(BO, ~)- S~(u)](aO+Aa)=O (21)

(S~WO- S~WO).(u~ – ja).Aa = O. (22)

Equation (22) is equivalent to (17) in which SO and S~@O

are replaced lby O and S~@O– S~UO. Therefore, referring to

discussions in Section III, we see that in the analysis of the

stability, the oscillator in the circuit as shown in Fig. 6 is

equivalent to the free-running oscillator (SO= O) for which

S~UO is replaced by S~WO– S=OO.

IV. STABILITY OF THE OSCILLATION MODE IN THE

MULTIPLE-OSCXLLATOR SYSTEM

In a power-combining system with n oscillators, there

exist more than n oscillation modes in general. Here, we

study the stability of an oscillation mode.

Fig. 7 shows a power-combining system with n oscilla-

tors. S~(ti ) represents the scattering matrix of the coupling

circuit at the reference plane, and S~( B, ti ) is that of the

oscillators. ~~ ( B, ti ) is a diagonal matrix whose i th diago-

nal component equals S!)( Bi, UO), where the superscript

(i), as well as the subscript i, represents the value of the

i th oscillator,,

Suppose that the locking has been established at ~0 in

the combining power system shown in Fig. 7; then the

equation of the circuit is given by

[SG(B., w.)- SL(tiO)]aO=O (23)

where a ~ represents an output-wave vector, i.e.,

aO=(a01~a02y”” “>%n)T. (24)

Operating points S~i)(BOi, tiO), where i =1,2,. -., n, are

given by calculating the following equation:

det[S~(BO, uO)-S~(uo)] =0. (:!5)

Let x~ be the eigenvector of the matrix in (23) and A~((JO)
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be the corresponding eigenvalue. Then we can rewrite a ~

as follows:

n—1

a.= ~ aok”xkexp(.jookt) (26)
k=O

where a Ok is a constant indicating the output-wave ampli-

tude and Uok is the root of Ak( UO) = O. Now, assume that
the input-wave vector is perturbed by a small amount Ab,

where

Ab=(Abl, Abz,. ... A)T)T.

Then the corresponding equation of (23) is given by

[sG(B. +AB, u)-SL(u)](ao+Aa) =Ab (27)

where Aa = (Aal, Aaz,. . . . Au.)T.

When Ab is taken away, (27) becomes

[S~(BO, u)-S~(a)](aO+ Aa)=O. (28)

From (23) and (27), we obtain

[S~(ti)]Aa=O (29)

where

[sN(@)] = [sG(%, u)-sL(@)]. (30)

Let Xk be the eigenvector of S~(ti) and let p~(ti) be the

corresponding eigenvalue. Note that the eigenvectors of

S~(0) are equivalent to those of the matrix in (23). Then

we can rewrite Aa as follows:

n—1

Aa = ~ AaOk-Xkexp((a~ + @k)t) (31)
k=O

where AuOk is a constant and ok – jak is the root of

Pk(@)=O.

Now we consider stability conditions for the oscillation

mode. The oscillation mode represented by the eigenvector

Xn is stable if one of following conditions is satisfied:

l)a~<Oandak<O

2)a~=Oandak<0

where k=l,2,. ... nz-l, nl+l, rn+2,. ..,1-l.

Condition 1) is obvious from (31) and the discussion in

Section III. Condition 2) comes from the following consid-

erations. The x~ component of Aa does not have influence

on the stability of the oscillation mode x~ because it does
not change the phase relation among the components of

the vector Xn. On the other hand, if a component other
than the x~ component of Aa does not decrease with time,

the oscillation mode x~ becomes unstable because the

phase relation among the components of x~ cannot be

kept. Further, the oscillation mode x~ becomes more sta-

ble as the lakl is greater.

V. APPLICATION TO THE POWER-COMBINING SYSTEM

Here, we apply the above stability condition to a power-

coupling system of identical oscillators using hybrid cou-

plers.

#2g0

&
/H-amn

“/
r’L (Load )

Fig. 8. Power-combining system of two

magic-T.

A. Two-Oscillator System

identical oscillators using the

Fig. 8 shows a power-combining system of two identical

oscillators using the magic T. The scattering matrix S~

represents the coupled circuit and is given by

(32)

where r~( O) = r;(o). e ‘j2u//”, where 1 represents the

equivalent length between the oscillator and the load, and

u indicates the velocity of the wave.

The scattering matrix S~ represents a diagonal matrix

with its diagonal components equal to the Rieke diagrams

of oscillators. It follows from (32) that the amplitude

of input wave bl is equal to that of b2. Therefore, S~ is

given by

[

S$) ( BO, tiO
&( BO, @O)=

)0

o S$2)(B0, tiO) 1. (33)

The operating points SG(BO,tiO) and oscillation modes x

of the circuit shown in Fig. 8 are given by calculating (23).

We obtain

(A) S$}(BO, OO) =S~2)(Bo, coo)

(Al) S$>(BO, aO) =S~2j(B0, uO) =r~(aO)

XO=(l,l)T (34a)

(A.2) S$)(BO, aO) = S~2}(B0, coO)=0

X1=(l, –l)T (34b)

(B) S$(BO,co O) #S~2)(B0,@O)

(B.1) l/S#)(BO, 00)+1/SA2)(B0, @o) = 2/r~(@o)

x,= (1/S~’)(Bo,~o),l/S~2) (Bo,Uo))T. (34c)

For a small perturbation, the matrix S~ ( u ) as shown in

(30) becomes

SN((0) =
[

2.f(l)-rL(u)/2 – rL(u)/2

– rL(u)/2 1(35)
24(2) – r~(u)/2 “

where u(i) = S~i) + S~~O.(ti – UO). From now on, 17~(u)

will be expressed approximately in the vicinity of the point

r~(~o) ( = ro) as fOllOWS:

rL(@)=ro +rLwo.(u– Oo). (36)
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1) oscillation Mode Given by (34a): In this case, the

oscillators operate in the same phase. Therefore, this oscil-

lation mode will be called the even mode. For the even

mode, the output waves are represented by a ~ = a ~xo,

where aO is a constant indicating the output-wave ampli-

tude. This is the desired oscillation mode because the

coupling circuit delivers the summed output power to the

load r~. The eigenvectors x and associated eigenvalues A

of S~ are obtained as follows:

‘O = (SC.. – ‘ho ).(a–uO)forxo

Al= so+ SGUO”(ti-oO)forxl (37)

where the eigenvectors X. and xl are represented in (34),

Equation (37) shows that the behavior of the X. and xl

components of Aa are analyzed the same as A a, respec-

tively, of the oscillator terminated by a load and the

injeetion-locked oscillator in Section III. From the stability

condition 2) in Section IV, we easily find that when the

reflection coefficient of the load is located in the stable

region as shown in Fig. 3, the even mode X. is stable

because a.= O and al< O. The even mode becomes more

stable because Ial I becomes greater as the operating point

SO is located farther from the boundary line shown in

Fig. 3.

2) Stability of Oscillation Mode Given by (34b): In this

case, the oscillators operate in anti-phase. Therefore, this

oscillation mode will be called the odd mode. For the odd

mode, the output waves are represented by a ~ = a .xl,

where aO is a constant indicating the output-wave ampli-

tude. This is the undesired oscillation mode because the

coupling circuit does not deliver the summed output power

to the load r=.

For this mode, S~ is given by (35) in which SO is

replaced by O. The eigenvectors x and associated eigenval-

ues A of S~ tie obtained as follows:

‘O= (SC.. – ‘ho ).(o–tiO)forxo

‘1= ~cu.”(ti – @O)forx~. (38)

Equation (38) shows that aO, as well as al, is equal to O.

From the stability condition 2) in Section IV, the odd

mode xl is found to be unstable. In other words, this mode

cannot exist in the System shown in Fig. 8.

3) Stability of Oscillation Mode Given by (34c): In this

case, some oscillators take the operating points in the

unstable region shown in Fig. 3. Therefore, this oscillation

mode will be called the H-mode (hybrid-mode). For the

H-mode, the output waves are represented by a.= aOx~,

where aO is a constant indicating the output-wave ampli-

tude. The H-mode is an undesired mode because the

coupling circuit does not deliver the summed output power

to the load r~.

Here, let us assume that the operating points S$)(BO, UO)
and S~2)(l?0, tiO) are represented by S~)(BO, aO) and

S~”)( BO, COO),respectively. Then the eigenvalues Afro and
A~l and the eigenvectors x~o and x~l are obtained as

shown in the Appendix. Note that when u ~ tiO, the direc-

tions of x~o and x~l become equal to those of x~ and

(l/(S~”J ), – l/S~S) )~, respectively. Then we find that the

Im

I-j

Fig. 9. Rieke diagram at port 1 of Fig. 8 when oscillators are in the

H-mode (calculated from tie Rieke diagram shown in Fig. 3).

ri ~0

.x
90’ phase Rot Matched load

shifter

Fig. 10. Power-combining system of 23 identical oscillators system using
3-dB directional couplers.

H-mode x~ is stable because aho = O and % <0, where
— a~O and -– a~l are the imaginary parts of the roots of

A~o(0) = O and A~l(o) = O, respectively. Thus, it is found

that the H-mode is harmful to single-mode operation.

However, the effect of the H-mode is not very serious in

the multiple-oscillator system for the following reasons.

1) In the H-mode, operating points occur in a narrow

region, as shown in Fig. 9. This region can be avoided (Fig.

9 shows that when I’~ is located outside the shaded area,

oscillators cannot oscillate in the H-mode).

2) In the circuit for 2“ oscillators, only one oscillator can

take the operating point in the unstable region, as we shall

see in the next section.

B. 2” Oscillators System

The above discussions can be extended to the 2“ identi-

cal oscillators system [7] as shown in Fig. 10. SC is a

2“ x 2“ diagoml matrix and is given by

Sc(BO, ti)=diag[ ““”, S$)(BO, U),-” “] (:39)
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Fig. 11. Rieke diagram measured at port 1 of Fig. 8.

where S~)(BO, a) is either S’#J(BO, w) or S~”)(BO, ~). S~

is a 2“ x 2n matrix and all components are r~/2~.

The even mode XO and the odd modes x~(k = 1,2,. ...

2“ – 1) are given by

Xm= (l,e~ma,- o.,e~m(’-’)a, . .,t?j@-’)a)T (40)

where a= 27/2” and m =0,1,2, ” . .,2”–1. The similar

analysis as shown in Section V-A can be applied, and we

find that the even mode XO is stable and the odd modes x~

are unstable.

Next, we consider the H-modes. Suppose the number of

oscillators whose operating points are in the unstable re-

gion is M, and then we obtain from det [S~(ti)] = O

(s$)) 2“-M-l(s@)M-l[( sg))(s@)

- {(2u - M)s@ + M.s~j } r./2n]s o. (41)

When M >2, this system beeomes unstable because

includes S#”) = O (refer to Section III). Therefore, we can

say that more than one oscillator cannot take the operating

point which is located in the unstable region. Thus, even if

one oscillator, unfortunately, takes the operating point in

the unstable region, the output-wave vector a. becomes

aO=aO(l,l,l,. -. ,l,l,S~U)/S~),l,l,.. .,l)=. (42)

Equation (42) indicates that as the number of oscillators is

increased, the H-modes resemble the desired mode (the

even mode) more closely and then the effect of the H-mode

decreases.

The above mathematical results explain that the oscilla-

tors in Fig. 10 can be mutually locked in the even mode,

and this system can give stable operation free from moding

problems.

C. Experimental Results

Fig. 11 shows the Rieke diagram which was measured

from port 1 of Fig. 8. Two identical Gunn oscillators with

Rieke diagrams as shown in Fig. 2 were used.

Referring to Fig. 11, we find that the coupling circuit of

Fig. 8 delivers the summed output power to the load when

r~, the reflection coefficient of the load, is located outside

the shaded area in Fig. 11. On the other hand, the output

power is small when r~ is located in the shaded area. This

means that the oscillation mode XO dominates outside the

shaded area, while the oscillation mode xl dominates in

the shaded area. (Note that the oscillation mode xl can

exist in the practical circuit because port 2 of Fig. 8 is

slightly mismatched.)

If we rotate Fig. 11 about 7r/4 rad in the counterclock-

wise direction, then we find it resembles Fig. 2. The small

power region corresponds to the unstable region of Fig. 2,

and the output power is almost doubled in the stable

region of Fig. 2. Therefore, we can say that the discussions

in Section 111 are experimentally verified.

Furthermore, the experiments performed at about 30

MHz on the system with 16 tunnel-diode oscillators and

lumped-constant 3-dB directional couplers as shown in

Fig. 10 showed that the output power was multiplied by

approximately 16, the spectrum was clean, and the circuit

adjustment was easy [7]. Therefore, we can say that the

oscillators were mutually locked in the even mode. These

experimental results agree well with the analytical results in

Seetion V-B.

VI. CONCLUSION

Using the Rieke diagram in terms of traveling waves, we

have discussed the stability of the oscillation mode in a

multiple-oscillator system. Further, we have clarified the

conditions for a stable operation free from the mode

problem as follows.

1) For the desired oscillation mode, the operating points

must be located in the stable region of the Rieke diagram.

Further, it is to be desired that the operating point is

located farther from the boundary lines.

2) For the undesired oscillation modes, the oscillators

must be in free-running conditions.

3) H-modes exist under some load conditions. Therefore,

some procedure is needed to render this mode unstable or

nondetnmental.

APPENDIX

For the H-mode, the eigenvalues A ho and Ahl, and the

eigenvectors Xho and Xhl of the matrix SN are given by

;:={s$’(Boj@)+si”’(Be) @)-rL(Q)

~ (sJ+(Bo,O)– sJ”)(~o, td))2+(rL(ti))2}/2

(Al)

~:=(rL(@)>s$)(Bo, @)-s$u)(Bo>@)

*/( Sg)(Bo, ti)-S~u)(Bo, u))2+(r~(@))2)~.

(A2)

When u – UO+ O, these become

‘h”= (S$);’;;JU))2

{
x (S;”) )2S$J0 + (s$))2sj:;

-(s~s) + sj@)2r~@o/2) ((A3)
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u-‘“o ((SJS))2SXI-(SJS))2S$:I+(So))’+)’
[7]

\T

+ (s$) + s,j+)2rLwo/2)
I

(A5) [8]

#—(J.

+ (So.))’+)’ (( )%“)‘ML-(s$”))2%:2

1
T

+ (s$) – s:@)2rL@o/2) . (A6)
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