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Stability of the Oscillation Mode in a
Multiple-Oscillator System

SUSUMU HAMAYA, MEMBER, IEEE

Abstract —By using the Rieke diagram in terms of traveling waves, we
discuss the stability conditions for an oscillation mode in a multiple-oscilla-
tor system which clearly indicate the reason why it is difficult for a
multiple-oscillator system to obtain a single-mode operation. Further, we
proposed a combining power system of oscillators which can give a stable
operation free from the moding problem. Experimental observations are
found to be in good agreement with the conclusions of the analytical
approach.

I. INTRODUCTION

VER THE YEARS, there has been great interest in

developing techniques for combining power from mi-
crowave and millimeter-wave power sources [1]-[9]. Micro-
wave power-combining techniques can be classified into
two categories: '

1) a number of devices that contribute to the output
power in a single circuit [1]-[4],

2) the output powers from a number of oscillators that
are summed to produce a higher output power [5]-[7].

Most of the approaches for power combining of solid-
state devices belong to the former class because of the ease
of attaining single-mode operation [1]-[4]. With the com-
bined oscillator in the latter class it is inherently difficult to
control oscillation modes [8]. However, studies of the latter
class are important for the purpose of combining oscilla-
tors, such as magnetrons and klystrons, and for use with
the method in the former class.

In this paper, we clarify why it is difficult for a
multiple-oscillator system to control oscillation modes. We
then discuss the condition to overcome this difficulty. To
this end, in Section II, we transform the Rieke diagram in
terms of the power into one in terms of traveling waves. In
Section ITI, we discuss the stability of oscillation in an
injection-locked oscillator using the new Rieke diagram. In
Section IV, extending the discussion in Section III, we
obtain a stability condition for the oscillation mode in the
multiple-oscillator system. In Section V, we apply the

“stability condition to a power-combining system with hy-
brid couplers.

II. RIEKE DIAGRAM IN TERMS OF TRAVELING WAVES

Fig. 1 shows a circuit of the injection-locked oscillator. If
a signal is injected with a frequency close to the free-run-
ning frequency, the oscillator will be locked to the injection
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Fig. 1. An equivalent circuit of an injection-locked oscillator with a
circulator.
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Fig. 2. Measured Rieke diagram of a Gunn oscillator.

signal. The quantities a and » shown in Fig. 1 will be
called, respectively, the output and input waves of the
oscillator. We define the inverse reflection coefficient of
the oscillator S as
Sg=b/a (1)
where a and b are values at the reference plane in Fig. 1.
Fig. 2 shows the conventional Rieke diagram of a Gunn
oscillator on the S;; plane. The constant power contours in
Fig. 2 can be transformed into constant amplitude con-
tours of A (= |a|]) and B ( =|b|). Using the relation
P=4>-B? )

we have
A*=P/(1-|S61%) ®3)

B*=|Sg|*P/(1-1S4/?) (4)
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Fig. 3. Ricke diagram in terms of the traveling waves for the same

Gunn oscillator as in Fig. 2. |a|?: numbers shown in circles.||’:
numbers shown in parentheses.

where P, A, and B are values of the oscillator at an
operating point S;. Applying (3) and (4) to the constant
power contours in Fig. 2, we obtain constant amplitude
contours of the output and input waves, as shown in Fig. 3.

Now we can express S; as a function of 4 and an
angular frequency w, i.e.,

S¢= Sé")(A, @)
or a function of B and o, i.e.,

S; =87 (B, w).

(5)

(6)

In this paper, we use the latter expression because the
oscillator in the injection-locked mode is controlled by an
input wave [10]. Here, it is assumed that S;(B, w) is an
instantaneous function of B. From now on, S{%(B,w)
will be replaced by S;(B, w).

Since we consider a small-signal perturbation in this
paper, we can express S; approximately in the vicinity of
an operating point S, as follows [9], [10]:

SG(B""’) = So+ SGBo.(B_ Bo)+SGw0'(w - 0)0). (7)

The terms on the right-hand side of (7) are the first three
terms of the Taylor expansion of S;(B, w) and

So = SG(Bo’ (.00)
Scpo=(0Ss/9B) at S, )
SG:,.m= (3SG/(900) at So' (10)

S; in square brackets [ ] indicates an operator which is
applied to the output wave a. Therefore, [S,;] is interpreted
as follows [8], [10]:

[Se(B,,w)]pexp((a+ jw,)t+ j8)
= Ss(B,,w,— ja)-pexp((a+ jo, )t + j6) (11)

where p, w,, 8, and « are constants. This is justifiable since
the time derivative is everywhere replaced by multiplica-
tion by jw in the ac circuit theory.

(8)

III. ANALYSIS OF STABILITY OF OPERATING POINT

A. Injection- Locked Oscillator

Suppose that the locking has been established in the
circuit shown in Fig. 1. Then the corresponding equation is
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given by

[S¢(B,,w)]a,=b, (12)

where

a,=alexp(jw,t)

In case |b,|>=1 mW and f—f,=+2 MHz, we may
expect that the oscillator is locked at the operating point X
or Y, as shown in Fig. 3. On the other hand, in case
|b,/> =1 mW and f — f, = +5 MHz, no locking takes place
because no operating point which satisfies (12) exists.

Even if an operating point which satisfies (12) exists in
Fig. 3, no locking takes place at the operating point, which
is unstable for a small perturbation. When b, is changed
by a small amount Ab, the locked-oscillator equation (12)
becomes

[So + SGBo' (lbo + Abl_ |bo|)+SGwo'(w - wo)](ao + Aa)
—b,+Ab. (14)

To determine a behavior of Aa( = Aa(?)), let us express Aa
as follows:

Aa(t)=Aa(0)-exp((a+ j(w,+w,))t) (15)
where w,, as well as the magnitude of Ag, is a slowly
varying function of time compared to one RF cycle.

Now, assume that Ab is removed and enquire whether
or not Aa decays with time. If it does, such an operating
point is stable. When Ab is removed, (14) becomes

[(S, + Sgus (0= @,))](a,+ Ba) =b,.  (16)
If a nonzero Aa exists, substituting (12) into (16), we have

a7

Equation (17) determines « for a given w,. Referring to
(11), we can state the following:

(SO + SG(«)O.(wn - ja)).Aa = 0'

1) When a> 0, the operating point is unstable.

2) When a <0, the operating point is stable.

3) When a =0, the operating point is stable; however,
in this case, the FM noise becomes extremely large
(9], [10].

From (17), the operating point S, is stable provided the
origin of the Rieke diagram is located on the left-hand side
of the vector direction of S;,,, which originates at the
point S,. Therefore, in Fig. 4, for example, operating
points S; and S, are stable; on the other hand, operating
points S, ; and S,, are unstable. Then, in Fig. 3, the
operating point Y is stable and X is unstable. From the
above discussion, the points of contact between the con-
stant contour of a frequency and an input-wave amplitude
form a boundary between the stable and the unstable
regions of the operating point. In Fig. 3, the dashed-dotted
line represents a boundary line obtained in this way.
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Fig. 4. Explaining the stability of the operating point.
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Fig. 6. Free-running oscillator terminated with a load.

When necessary, we express the operating point
S;(B,, w,) in the stable region as S§(B,, w,) and in the
unstable region as S$*(B,, w,).

In the circuit as shown in Fig. 1, suppose that the
frequency of the input wave is swept with a constant
amplitude. When |b,|2=1.0 mW, for example, the operat-
ing point moves from A4 through Y to B along the constant
amplitude contours of the input wave in Fig. 3. A solid line
in Fig. 5 shows the locking range and the output-wave
amplitude variation as the frequency of an input wave is
swept, which are predicted from Fig. 3. Fig. 5 shows that
the analytical results agree well with experimental results
for various values of |b,|%.

B.  Free-Running Oscillator Terminated with a Load

Fig. 6 shows a diagram of the free-running oscillator
terminated with a load. Here, the input wave b,(= B,
exp(jw,t + j,)) is the reflected wave from the load. When
the oscillator in Fig. 6 is in the steady state at the operating
point S, (= S;(B,, w,)), the corresponding equation to (12)
is given by

[SG(Bo’w)—SL(w)]ao=O (18)
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Fig. 7. Power-combining system of » oscillators.

where S, (w) is the reflection coefficient looking into the
load from the reference plane shown in Fig. 6. From (18),
we obtain

So=SG(Bm“’o)=SL(‘*’o)- (19)

In the vicinity of the operating point S, by the use of the
Taylor expansion, S;(w) is approximated as follows:

SL(w)=So+SLwo'(w—wo)' (20)

As the corresponding equations to (16) and (17), we have
[So(B,,©)— S, ()] (a,+Aa)=0 (21)
(SGwo—SLmo)'(wn_ja)'Aa=0‘ (22)

Equation (22) is equivalent to (17) in which S, and S,
are replaced by 0 and S;_, — S, . Therefore, referring to
discussions in Section III, we see that in the analysis of the
stability, the oscillator in the circuit as shown in Fig. 6 is

equivalent to the free-running oscillator (S, = 0) for which
Scwo 18 replaced by S¢,, — S;..-

IV. STABILITY OF THE OSCILLATION MODE IN THE
MULTIPLE-OSCILLATOR SYSTEM

In a power-combining system with n oscillators, there
exist more than r oscillation modes in general. Here, we
study the stability of an oscillation mode.

Fig. 7 shows a power-combining system with n oscilla-
tors. §;(w) represents the scattering matrix of the coupling
circuit at the reference plane, and S;(B, w) is that of the
oscillators. S;(B, w) is a diagonal matrix whose ith diago-
nal component equals S{”(B;, w,), where the superscript
(i), as well as the subscript i, represents the value of the
ith oscillator.

Suppose that the locking has been established at w, in
the combining power system shown in Fig. 7; then the
equation of the circuit is given by

[SG(Bo’wo)_sL(wo)]ao=0 (23)
where a 0 represents an output-wave vector, i.e.,
ao=(a01’ao2"”7aon)T' (24)

Operating points S§?(B,;, w,), where i =1,2,-- -, n, are
given by calculating the following equation:

det[S5(B,,w,)~ S, (w,)] =0. (25)

Let x, be the eigenvector of the matrix in (23) and A (w,)



596

be the corresponding eigenvalue. Then we can rewrite a,
as follows:
n—1

a,= Z aok'xkexp(jwokt)
k=0

(26)

where a,, is a constant indicating the output-wave ampli-
tude and w,, is the root of A,(w,)=0. Now, assume that
the input-wave vector is perturbed by a small amount Ab,
where

Ab=(Ab,, Ab,,---,Ab,)".
Then the corresponding equation of (23) is given by
[S.(B,+AB, w)—S,(w)](a,+Aa)=Ab

where Aa = (Aay, Aa,,-- -, Aa,)T.
When Ab is taken away, (27) becomes

[SG('BO’ w)-_SL(w)](ao + Aa) =0.
From (23) and (27), we obtain
[SN(“’)]A“ =0

(27)

(29)

where
[Sy(@)] = [S(B,,w)—S,()]. (30)

Let x, be the eigenvector of Sy (w) and let p,(w) be the
corresponding eigenvalue. Note that the eigenvectors of
Sy(w) are equivalent to those of the matrix in (23). Then
we can rewrite Aa as follows:

n—1

Aa= Y Aayexiexp((ap+ joo,)t)
k=0

(31)

where Aa,, is a consiant and w, — ja, is the root of
pip(w)=0.

Now we consider stability conditions for the oscillation
mode. The oscillation mode represented by the eigenvector
x,, is stable if one of following conditions is satisfied:

1) a,<0and a, <0

2) a,, =0 and ak<0

where k=1,2,--- ., m—1,m+1,m+2,---,n—1.

Condition 1) is obvious from (31) and the discussion in
Section III. Condition 2) comes from the following consid-
erations. The x,, component of Aa does not have influence
on the stability of the oscillation mode x,, because it does
not change the phase relation among the components of
the vector x,,. On the other hand, if a component other
than the x,, component of Aa does not decrease with time,
the oscillation mode x,, becomes unstable because the
phase relation among the components of x,, cannot be
kept. Further, the oscillation mode x,, becomes more sta-
ble as the |a,] is greater.

V. APPLICATION TO THE POWER-COMBINING SYSTEM

Here, we apply the above stability condition to a power-
coupling system of identical oscillators using hybrid cou-
plers.

(28)
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Fig. 8. Power-combining system of two identical oscillators using the
magic-T.

A.  Two-Oscillator System

Fig. 8 shows a power-combining system of two identical
oscillators using the magic T. The scattering matrix S,
represents the coupled circuit and is given by

5.(0)= (. ()/2) ] ! (32)

where T;(w)=Tf(w)-e/2“//*, where [ represents the
equivalent length between the oscillator and the load, and
v indicates the velocity of the wave.

The scattering matrix S; represents a diagonal matrix
with its diagonal components equal to the Rieke diagrams
of oscillators. It follows from (32) that the amplitude
of input wave b, is equal to that of b,. Therefore, S is
given by

SG<1> ( BD’ wO)

SG(BO, w0)= 0 SG<2>(B0’w0)

. (33)

The operating points S;(B,, w,) and oscillation modes x
of the circuit shown in Fig. 8 are given by calculating (23).
We obtain

(A) SE2(B,,0,)=S5(B,,,)
(A‘l) S(gl>(Bo’wa)=SG<2>(Bo’wo)=I‘L(wa)

x,=(1,1)7 (34a)
(A2) S§°(B,,w,)=S{(B,,0,)=0
x=01,-1)7 (34b)

(B) S(g1>(’Bo’wo) 5ESé2>(Bo’(""o)
(Bl) l/SéD(Bo’ wo)+1/S(§2>(Bo’wo)=2/FL(wo)
xp = (1/58°(B,,%,),1/8§(B,,,))".  (34c)

For a small perturbation, the matrix S, (w) as shown in
(30) becomes .

~Ty(w)/2
w2 — I (w)/2

u®-T,(w)/2
—I(w)/2
where u¢? =S + S§2 -(w — w,). From now on, T,(w)

will be expressed approximately in the vicinity of the point
I'i(w,) (=T,) as follows:

PL(w) =ro+ I-‘Lwo'(w - wa)'

Sy(w)= . (35)

(36)
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1) Oscillation Mode Given by (34a): In this case, the
oscillators operate in the same phase. Therefore, this oscil-
lation mode will be called the even mode. For the even
mode, the output waves are represented by a,=a x,,
where a, is a constant indicating the output-wave ampli-
tude. This is the desired oscillation mode because the
coupling circuit delivers the summed output power to the
load T,. The eigenvectors x and associated eigenvalues A
of S, are obtained as follows:

AO= (SGwo_ero)'(w—wo) fOI' X9 .
A =S, + Sgu, (@ —w,) for x; (37)

where the eigenvectors x, and x; are represented in (34).
Equation (37) shows that the behavior of the x, and x,

components of Aa are analyzed the same as Aaq, respec-’

tively, of the -oscillator terminated by a load and the
injection-locked oscillator in Section III. From the stability
condition 2) in Section IV, we easily find that when the
reflection coefficient of the load is located in the stable
region as shown in Fig. 3, the even mode x, is stable
because a, =0 and a; < 0. The even mode becomes more
stable because |ay| becomes greater as the operating point
S, is located farther from the boundary line shown in
Fig. 3. ., ,

2) Stability of Oscillation Mode Given by (34b): In this
case, the oscillators operate in anti-phase. Therefore, this
oscillation mode will be called the odd mode. For the odd
mode, the output waves are represented by a,=a,x,,
where a, is a constant indicating the output-wave ampli-
tude. This is the undesired oscillation mode because the
coupling circuit does not deliver the summed output power
to the load I;.

For this mode, Sy is given by (35) in which S, is
replaced by 0. The eigenvectors x and associated eigenval-
ues A of S are obtained as follows:

A0 = (SGwo -T

Lwo)' (w - wo) for Xo

(38)

Equation (38) shows that a,, as well as a,, is equal to 0.
From the stability condition 2) in Section IV, the odd
mode x, is found to be unstable. In other words, this mode
cannot exist in the system shown in Fig. 8.

3) Stability of Oscillation Mode Given by (34c): In this
case, some oscillators take the operating points in the
unstable region shown in Fig. 3. Therefore, this oscillation
mode will be called the H-mode (hybrid-mode). For the
H-mode, the output waves are represented by a,=a,x,,
where a, is a constant indicating the output-wave ampli-
tude. The H-mode is an undesired mode because the
coupling circuit does not deliver the summed output power
to the load T';.

Here, let us assume that the operating points S$V(B,, w,)
and S§¥(B,,w,) are represented by S§¥(B,,w,) and
S (B,, w,), respectively. Then the eigenvalues ), and
A, and the eigenvectors x,, and x, are obtained as
shown in the Appendix. Note that when & — w,, the direc-
tions of x,, and x, become equal to those of x, and
1/(S5%), —=1/88)T, respectively. Then we find that the

A1 = SGwo'(w - wo) for X1-
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3-dB directional couplers.

H-mode x,, is stable because ;=0 and a;; <0, where
—a;, and — ay,; are the imaginary parts of the roots of
Auo(w)=0 and A, (w)=0, respectively. Thus, it is found
that the H-mode is harmful to- single-mode operation.
However, the effect of the H-mode is not very serious in
the multiple-oscillator system for the following reasons.

1) In the H-mode, operating points occur in a narrow
region, as shown in Fig. 9. This region can be avoided (Fig.
9 shows that when T, is located outside the shaded area,
oscillators cannot oscillate in the H-mode). :

2) In the circuit for 2” oscillators, only one oscillator can
take the operating point in the unstable region, as we shall
see in the next section. ‘ :

B. 2" Oscillators System

The above discussions can be extended to the 2" identi-
cal oscillators system [7] as shown in Fig. 10. §; is a
2" X 2" diagonal matrix and is given by

Sg(B,,w) =diag[---,S(B,,0),---]  (39)
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where S§P(B,,w) is either S§*7(B,, w) or S{(B,, ). S,
is a 2" X 2" matrix and all components are I'; /2"

The even mode x, and the odd modes x,(k=1,2,---,
2" —1) are given by

x,, = (1,e/me ... emi=Da .. .,ejma"—l)a)T (40)

where a=2#/2" and m=0,1,2,---,2"—1. The similar
analysis as shown in Section V-A can be applied, and we
find that the even mode x,, is stable and the odd modes x,
are unstable.

Next, we consider the H-modes. Suppose the number of

oscillators whose operating points are in the unstable re-
gion is M, and then we obtain from det[Sy(w)]=0

($82)" M (sg0) M (s80)(58)
—{(@"— M)S{™ + M-8 YT, /27 =0, (41)

When M >2, this system becomes unstable because
includes S§*> =0 (refer to Section III). Therefore, we can
say that more than one oscillator cannot take the operating
point which is located in the unstable region. Thus, even if
one oscillator, unfortunately, takes the operating point in
the unstable region, the output-wave vector a, becomes
a,=a,(1,1,1,---,1,1,8$/85,1,1,---,1)". (42)
Equation (42) indicates that as the number of oscillators is
increased, the H-modes resemble the desired mode (the
even mode) more closely and then the effect of the H-mode
decreases.
The above mathematical results explain that the oscilla-
tors in Fig. 10 can be mutually locked in the even mode,

and this system can give stable operation free from moding
problems.

C. Experimental Results

Fig. 11 shows the Rieke diagram which was measured
from port 1 of Fig. 8. Two identical Gunn oscillators with
Rieke diagrams as shown in Fig. 2 were used.

Referring to Fig. 11, we find that the coupling circuit of
Fig. 8 delivers the summed output power to the load when
T, the reflection coefficient of the load, is located outside
the shaded area in Fig. 11. On the other hand, the output
power is small when T, is located in the shaded area. This
means that the oscillation mode x, dominates outside the
shaded area, while the oscillation mode x; dominates in
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the shaded area. (Note that the oscillation mode x; can
exist in the practical circuit because port 2 of Fig. 8 is
slightly mismatched.)

If we rotate Fig. 11 about =/4 rad in the counterclock-
wise direction, then we find it resembles Fig. 2. The small
power region corresponds to the unstable region of Fig, 2,
and the output power is almost doubled in the stable
region of Fig. 2. Therefore, we can say that the discussions
in Section III are experimentally verified.

Furthermore, the experiments performed at about 30
MHz on the system with 16 tunnel-diode oscillators and
lumped-constant 3-dB directional couplers as shown in
Fig. 10 showed that the output power was multiplied by
approximately 16, the spectrum was clean, and the circuit
adjustment was easy [7]. Therefore, we can say that the
oscillators were mutually locked in the even mode. These
experimental results agree well with the analytical results in
Section V-B.

VL

Using the Rieke diagram in terms of traveling waves, we
have discussed the stability of the oscillation mode in a
multiple-oscillator system. Further, we have clarified the
conditions for a stable operation free from the mode
problem as follows.

1) For the desired oscillation mode, the operating points
must be located in the stable region of the Rieke diagram.
Further, it is to be desired that the operating point is
located farther from the boundary lines.

2) For the undesired oscillation modes, the oscillators
must be in free-running conditions.

3) H-modes exist under some load conditions. Therefore,
some procedure is needed to render this mode unstable or
nondetrimental.

CoNCLUSION

APPENDIX

For the H-mode, the eigenvalues A,, and A, and the
eigenvectors x,, and x,; of the matrix S, are given by

A
" = {8§7(B,,0)+ 5§ (B, )~ T (o)
>\h1

F(5(B,,0)- 58(B,,0)) +(Tu(w)) ) /2
(a1)

Xho

Xp (FL(w), S§7(B,, w)— S§(B,, w)

T

£/(57(8,,0) - (B, )+ (T (0))’)

(A2)
When w — w, — 0, these become
Ao = wz_ = 2
(55)+(s57)
X {(850)’ 882, +(887)° 882,
~ (S8 +889) Tp,,/2) (A3)
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($82)"+ (8547’
M= T ol 5w
w—
+ 0 S S<’> S ) 84w
(S§s>)2+(S§“>)2{( [ ) +( ) Gwo
(88 = 8£°) T2 (A9)
5$0)- So<a> (s5)?
xh0=2 S,,<s> +So<u) Lwo (w ®, )/2 S<s>+S<u)
w—w, 2 2
S2)° 8¢ —(8¢0) 5w
(S<s>) ( (u)) {( ) ) C<v'wo ( o ) "Gwo
T
(580 + 59) Ty /2) (a5)
ORI ()2
xhl = SO So ‘ ero.(w - wo)/2’ - (So )

PR, _ AR A— + ——
S5 + §5@ S50 + 5§

+ w—w,
(50) + (589’

{(s89) 582~ (852) 42,
T

+(S$0 = 5 T,,/2) (A6)
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